
polychemprint3
Release 1.0

Feb 08, 2022

User Guide

1 Program Overview 3

2 Installation and Setup 5
2.1 Requirements/Supported OS . 5
2.2 Installing Anaconda (optional) . 5
2.3 Installing PCP3 from PyPi via pip . 6
2.4 Run from Source (from Github) . 6
2.5 Setting up new Hardware . 7
2.6 Modifying Marlin Firmware . 7

3 Main Menu and Navigation 9
3.1 Reading Menus . 10
3.2 Navigating Menus . 10
3.3 Special Commands . 10
3.4 Quit the Program . 11
3.5 Ctrl + C, or Break . 11

4 Configuration/About Menu 13
4.1 View Program Details and License Text . 13
4.2 Change Level of Output Detail . 14
4.3 Change Axes and Tool . 15

5 Hardware Menu 17
5.1 GCODE Entry . 17
5.2 Controlling Tools . 18
5.3 Hotkeys for Jogging Axes . 19
5.4 Clean and Raise Routines . 20
5.5 T ? , / . Commands . 21
5.6 Quit Hardware Menu . 21

6 Sequence Menu 23
6.1 The Sequence Library . 24
6.2 Importing GCode Sequences . 32

7 Recipe Menu 37
7.1 Creating a new Recipe . 37
7.2 Modifying/Saving Active Recipe . 38

i

7.3 Browse/Load Stored Recipes . 43
7.4 View Recipe Details . 44
7.5 Execute Recipe Menu . 44

8 PCP3 Package Overview 45

9 Sphinx Autodocumentation 47
9.1 polychemprint3.commandLineInterface . 47
9.2 polychemprint3.data . 49
9.3 polychemprint3.axes . 49
9.4 polychemprint3.tools . 53
9.5 polychemprint3.recipes . 58
9.6 polychemprint3.sequence . 60
9.7 polychemprint3.utility . 69

Python Module Index 73

Index 75

ii

polychemprint3, Release 1.0

PolyChemPrint3 is an open source benchtop additive manufacturing software developed at the University of Illinois
by Bijal Patel and Dr. Ying Diao. For more information, please visit the project homepage and Diao Research Group
homepage.

This readthedocs.io page contains: A ‘user guide’ with instructions on setting up and operating the program.

A ‘software guide’ intended as a programming aid that contains the organized python docstrings for the modules,
classes, and methods of this object-oriented program.

Note: If you use this software/code, please cite the original paper listed on the project homepage! It really helps!

User Guide 1

https://github.com/BijalBPatel/PolyChemPrint3/blob/master/LICENSE.txt
https://publish.illinois.edu/polychemprint3
http://diao.scs.illinois.edu/Diao_Lab/Home.html
http://diao.scs.illinois.edu/Diao_Lab/Home.html
https://publish.illinois.edu/polychemprint3/

polychemprint3, Release 1.0

2 User Guide

CHAPTER 1

Program Overview

PolyChemPrint3 (PCP3) is a command-line interface (CLI) Windows/Linux program that handles communication
between the user and additive manufacturing(AM) hardware. In some ways, PCP3 offers overlapping functionality
with 3D printer control software such as pronterface and 3D slicing programs such as slic3r or Cura, but optimized for
AM research with unconventional, non-FDM toolheads such as pneumatic (melt) extruders, LASERs, syringe pumps,
etc.

At the most basic level, users can directly send commands to the motion axes and toolhead to execute GCode move
sequences and simple tool on/off/ power set commands. The next level up is to use parameterized, hardcoded ‘se-
quences’ to execute specific 2D and 3D patterns such as meanderlines, cuboids, electrode patterns, etc. For more com-
plex 2D/3D patterns, GCode files created by slicers such as GCodeTools in Inkscape and Cura/ Slic3r can be imported
as sequences. Finally, any combination of sequences can be chained together into ‘Recipes’, offering a ‘code-free’

3

https://www.pronterface.com/
https://slic3r.org/
https://ultimaker.com/software/ultimaker-cura

polychemprint3, Release 1.0

way to build-up complex patterns. Automatic data-logging exports print parameters to text files to optimize parameter
screening.

Note: Even if you have identical hardware to the original developers, the software will need some initial setup - so pay
careful attention to the “Installation and Setup” section. Best of luck!

4 Chapter 1. Program Overview

CHAPTER 2

Installation and Setup

2.1 Requirements/Supported OS

PCP3 is designed to run on Windows and Linux distributions with Python 3 on even very low spec hardware. At the
end of the day, for just sending commands between hardware, there really isn’t much you need in terms of specialized
system specs. Just serial ports that can be connected to your desired hardware.

In our lab, we have run PCP3 on Debian 9/ Mint 19 Linux PCs and on Windows 10 using Ananconda as the python
environment.

2.2 Installing Anaconda (optional)

To use polychemprint3, you need to have a python 3 environment set up. If you are on Linux, your distribution most
likely has python 3 installed out of the box. If not, a simple way to set things up is to use Anaconda, a free and open
source python distribution comonly used in data science.

After successfully installing Anaconda, open Anaconda Navigator and launch anaconda prompt. Boxed in red below:

5

https://www.anaconda.com/products/individual.

polychemprint3, Release 1.0

2.3 Installing PCP3 from PyPi via pip

After opening the appropriate terminal window (Anaconda Prompt/Terminal/Command Prompt), enter:

pip install --no-cache-dir --pre --upgrade polychemprint3

Press enter and polychemprint3 should install with any required dependencies automatically.

To run the program, just type

polychemprint3

into the terminal window and the program should launch

2.4 Run from Source (from Github)

All source code (for PCP3 and this manual) is posted on github at https://github.com/BijalBPatel/PolyChemPrint3 .
Three branches are maintained:

• Master: The main stable release

6 Chapter 2. Installation and Setup

https://github.com/BijalBPatel/PolyChemPrint3

polychemprint3, Release 1.0

• Beta: A test release which may have new features we are testing. This is the version we run in our lab.

• Dev: Testing release for new and semi/not working features.

If you are new to github, there are many quick tutorials online - such as this.

2.5 Setting up new Hardware

PCP3 as written uses pySerial to communicate with hardware devices. To add a new tool, begin by cloning and
renaming one of the existing tool.py files in the polychemprint3/tools directory. We will then go line by line and
replace comment text and parameters such as device address, baudrate, etc with the values that correspond to your
particular hardware. Here we highlight key parameters to change:

1. In the __init__ method, set the devAddress, baudRate, commsTimeOut, and other parameters to reflect your
hardware.

2. Next, go through each of the methods (activate, deactivate, engage, disengage, setValue, startSerial, etc), and
write the necessary code to complete the communication loop with your hardware. If your device has a simple
arduino based controller, these methods may be very simple (see Laser6W.py). If the device uses a special
packet-based protocol, this can be more challenging, but see ultimusExtruder.py for a good example of this.

3. No matter what, make sure the methods specified in the toolSpec.py abstract base class are filled out in your
new code file.

4. Once the tool.py file is complete, restart PCP3 and check that it properly is loaded [the starting load text will
indiciate “PASS” for both conditions.

2.6 Modifying Marlin Firmware

If you are using a consumer 3D printer for your motion axes, there is a high likelihood you will need to modify the
stock Marlin firmware to work with PCP3. Our main goal is to force the command acknowledge statement “ok”
to only be sent from the printer AFTER all motion steps are complete. If you are running on Linux, you may also need
to change the firmware baudrate for compatibility. Here is how:

1. Download the Marlin firmware source files either from your printer manufacturer’s webpage, or from the main
Marlin Firmware webpage

2. If you are getting firmware from the Marlin site, see if you can find the configuration files for your printer in the
MarlinFirmware Github folder that corresponds to your printer.

3. Dowload arduinoIDE and from Tools -> Boards -> Board Manager install the RAMBo board files.

4. Open all of your Firmware files in arduino IDE by running the Marlin.ino file in the Marlin folder.

5. If necessary, in the conditionals.h file, set the baudrate to your desired value.

6. Navigate to the Marlin_main.cpp file and find the “process_next_command()” method. At the very end of this
method (see image), add the following statement:

stepper.synchronize(); //PAUSES UNTIL MOTION COMPLETE BEFORE SENDING OK

2.5. Setting up new Hardware 7

https://guides.github.com/activities/hello-world/
https://marlinfw.org/meta/download/
https://github.com/MarlinFirmware/Configurations/tree/release-1.1.9

polychemprint3, Release 1.0

7. Compile as hex and export

8. Use a program such as cura to load your new firmware onto your printer.

Note: Be sure to save the old firmware, you will need it to go back to normal FDM 3D printing.

8 Chapter 2. Installation and Setup

CHAPTER 3

Main Menu and Navigation

PCP3 has a (hopefully) straightforward command-line interface (CLI) based on a series of menus and submenus. The
Main Menu is the ‘root’ of the decision tree, from here you can navigate between the main functions of the program:
configuration, manual control, sequences, and recipes. It should appear after the initial loading sequence and is a good
place to start learning how to navigate the CLI.

9

polychemprint3, Release 1.0

3.1 Reading Menus

Here is a screenshot of the main menu in version 3.0:

As you can see, there are 2 columns separated by a vertical bar (“|”). On the left, is a command string (enclosed in
brackets “[]” or parentheses “()”) and short name for the command. At right, there is an optional detailed description.
For some commands, such as those near the end of the list (in teal) (“/”, “.”), the text on the right is initially blank and
will be filled in based on the saved command in memory.

This scheme repeats throughout: in order to execute a command or change a data value, enter the command string at
the extreme left (in brackets or parentheses).

At the bottom of the screen is the prompt.

3.2 Navigating Menus

As mentioned above, the leftmost columnn [boxed in red] contains the command strings. Type in 0 gives users access
to Configuration/About Menu. Type in 1 gives you access to Hardware Control Menu. Type in 2 to go to Sequence
Menu. Type in 3 to gain access to Recipe Menu.

3.3 Special Commands

Type in “T” to perform a test code run. This executes whatever code is in the io_TestCode() subroutine of the
__main__.py file. By default the subroutine is left empty, but I found it handy when developing the code, so I left it in
as an option to aid user testing.

10 Chapter 3. Main Menu and Navigation

polychemprint3, Release 1.0

Type “?” to repeat the current menu. Essentially it is just a handy refresh in case the screen gets cluttered with text. In
this case, a new Main Menu will appear.

The “/” command works repeats the last command entered. This is mostly useful just when doing manual hardware
control. In some menus this leads to meaningless behavior and so is disabled. For example, if the previous command
typed in the terminal is “G0 X5”, typing “/” will send “G0 X5” to the printer again.

The “.” command will repeat the command that is save in Stored Saved Command.

The “,” command lets users save a command, so user can just type . to perform a long command instead of typing the
long command every time. Again, a handy shortcut mostly for manual hardware control.

3.4 Quit the Program

In the main menu, “q” lets users quit the program. This triggers a confirmation prompt as follows:

Now, type “Y” or “q” will let users exist out of the program and returning to the terminal. (Note: In general, input to
polychemprint3 is not case sensitive, unless being sent directly to hardware) Typing N will reset the program, which
means restarting the program. Any work (recipes) that are not saved will be lost.

3.5 Ctrl + C, or Break

As of version 3.0, users can use the key combination “Ctrl + C” to shortcircuit ongoing processes and return to the last
menu. This is invaluable for cases where you start a print sequence (with thousands of lines) and realize that you need
to cancel out early. Note: THIS WILL NOT automatically turn off toolheads or suspend the current GCode command
that is sent, it just prevents the PC from sending further commands. So be vigilent! The hardware off switch is still the
last best fail-safe.

3.4. Quit the Program 11

polychemprint3, Release 1.0

12 Chapter 3. Main Menu and Navigation

CHAPTER 4

Configuration/About Menu

The configuration/about menu Configure/About Menu allows users to view program and license information about
Polychemprint3. This menu also includes options to change the level of output details, and switch axes and tools the
program is controlling. Here is what Configuration/About Menu looks like:

4.1 View Program Details and License Text

By typing command 0 in Configuration/About Menu, program details and license text will be displayed on the
terminal like the following:

13

polychemprint3, Release 1.0

4.2 Change Level of Output Detail

By entering command 1 in Configure/About Menu, the amount of details presented in the program will be altered.
Currently, only two levels of output details exit: “more” level and “less” level. Whether this alternation increases or
reduce amount of information displayed depends on the current level of output details. If the program is in the “more”
level, type in 1 will change to “less” level and vice versa.

14 Chapter 4. Configuration/About Menu

polychemprint3, Release 1.0

4.3 Change Axes and Tool

Command 2 and 3 in Configure/About Menu change the axes and tool that polychemprint3 is controlling. Axes
represents the hardware in charge of movements, for example if polychemprint 3 is controlling a 3D printer, axes
should be set to that 3D printer since it controls movement in x, y, and z directions. In order to change the axes, type
2 in the command line and terminal will display all the axes that is loaded into polychemprint3 and ask for user input
to select the device need to be activate like the following(boxed in yellow):

Right now, the program is loaded with two axes: lulzbotTaz6_BP and nullAxes. To select the desired axes, simply type
in the corresponding commands (boxed in yellow) on the left of axes names, in this case A0 or A1. Tools are hardware
that does not control movement. For example, in laser cutting, the amount of energy emitted need to be controlled, so
laser will be tool in this case. The change tool procedure works the same way as change axes: type 3 in command and
select the desired tool using commands show on the left of tool name (boxed in yellow).

4.3. Change Axes and Tool 15

polychemprint3, Release 1.0

16 Chapter 4. Configuration/About Menu

CHAPTER 5

Hardware Menu

This menu allows for the most basic communication to the hardware: line by line command entry and execution, along
with some hotkeys for jogging the motion axes.

5.1 GCODE Entry

Direct GCODE commands are accepted as input in Hardware Menu. For example, if the axes need to be moved in the
positive x direction for 20 mm, Gcode command “G0 X20” can be typed in to perform such task, as shown below.

17

polychemprint3, Release 1.0

5.2 Controlling Tools

Set Tool Value Type in T[value] under Hardware Menu allows users to directly set tool values. For example, to set
tool value to 100, users can type in T100 in terminal and program will give an output indicting value is set like
the following:

Turning Tool On and Off Type in Toff or Ton to engage tool dispense or disengage tool dispense. It works just like
a switch that turns the tool from off to on or on to off.

18 Chapter 5. Hardware Menu

polychemprint3, Release 1.0

But if the current state of tool is off and a Toff command is executed, program will give a warning message
saying that “Dispense already off”. If the current state is on, Ton command is sent, program will also give
error message saying “Dispense already on” These are handy for troubleshooting sequences/recipes, but are
otherwise just for your information.

5.3 Hotkeys for Jogging Axes

For convenience, the following commands jog axes for small distance movement in all direction. (Note that these are
not case sensitive)

5.3. Hotkeys for Jogging Axes 19

polychemprint3, Release 1.0

Command Direction Distance
a -x 1mm
d x 1mm
r -y 1mm
f y 1mm
s -z 1mm
w z 1mm
x -z 0.1mm
z -z 0.01mm

5.4 Clean and Raise Routines

Commands 1 and 0 provide convenient ways to lift the toolhead 20 mm. If command 0 is chosen,the
terminal will prompt on whether to lower 20mm or not. Type in Y, axes will be lowered for 20 mm in Z
direction. Type in N, axes will stay still.

20 Chapter 5. Hardware Menu

polychemprint3, Release 1.0

5.5 T ? , / . Commands

Functions of T ? , / and . have been described in user guide section 3.3. Please see it for more information.

5.6 Quit Hardware Menu

To exit out of the Hardware Menu, type q in the prompt and you will be returned to the Main Menu.

5.5. T ? , / . Commands 21

polychemprint3, Release 1.0

22 Chapter 5. Hardware Menu

CHAPTER 6

Sequence Menu

In this menu, users perform various operations with parameterized ‘sequence’ files that describe basic motion/tool
paths.

Each sequence shown in the menu (labeled S#) corresponds to an individual python file that gives the ‘blueprint’ for
the sequence. For example, entering “S6” opens the “Line” submenu as shown below:

23

polychemprint3, Release 1.0

From this submenu, the parameters of the sequence can be modified. These include basic notetaking parameters, such
as the creation date of the sequence, description, name etc. and actual geometric/ execution parameters such as the
printing speed, length, and tool on/off values.

After the sequence parameters have been finalized, the bracketed commands at the bottom can be used.

• ADD inserts the sequence into the active recipe at a given index

• PRIME generates the python commands that will be executed when the sequence is run and stores them in RAM

• VIEW displays the python commands in the terminal for user inspection

• GO begins execution of the program

• q quits the menu and returns to the main menu

6.1 The Sequence Library

Users can create and add sequences by cloning the python files in the polychemprint3/sequence folder and modifying
parameters. By default, releases of polychemprint3 contain the following sequences built-in:

6.1.1 Basic Move Sequence

BasicMove is a sequence that control axes to move in x, y and z direction. Its menu looks like the following:

24 Chapter 6. Sequence Menu

polychemprint3, Release 1.0

The top five commands (P1 to P5) introduce the basic information of this sequence including the name, created date
and etc. P6 allows user to change the reference the command is execute from, whether relative to current position or
the absolute reference, which is the origin. P7 is the axes speed that controls how fast axes should move and the unit
is in mm/min. P8 through P10 represent the distance axes is going to move move in x, y, and z direction. The unit is
in mm.

PRIME,VIEW, and GO

After modifying a parameter, GO command allows the execution of the sequence and corresponding Gcode command
will be displayed on the terminal. It is highly recommended to do PRIME and VIEW command before engaging
printing sequence. PRIME command will generate the print commands without actual execution done by hardware
and VIEW will show those commands on terminal for user to review. Thus, it is best to do PRIME and VIEW to
check on print commands in case there is errors that might break hardware

6.1.2 Circle Sequence

Circle is a sequence that lets axes moves in a circle with radius set by user. Below is the menu of circle:

P1 through P5 inform users the basic information of this sequence. P6 controls the speed of the axes movement and
unit is in mm/min. P7 command controls the radius of the circle. Since hardware like 3D printer is limited to straight
move only, axes have to move step by step in x and y direction to create roughly round object. That is where P8 comes
from. It represents the step axes moves in x and y. A smaller P8 value lead to a more circular shape.

Tool ON and OFF Value

6.1. The Sequence Library 25

polychemprint3, Release 1.0

P9 and P10 control the on and off tool value. For example, when trying to do laser cutting, the energy of laser when
print, on value, will be like 100 watts, and off value will be 0. Users should adjust the P8 and P9 based on the tool
they are using.

6.1.3 Cuboid Sequence

Cuboid sequence allows a cuboid to be created. Here is what the menu looks like:

P1 through P5 inform users the basic information of this sequence. P6 controls the speed of the axes movement and
unit is in mm/min. P7 through P9 controls the width, length, and height of the cuboid. The unit for those value is in
mm. P10 controls layer height. Since this is a 3D object, 2D layers needs to be build up to form 3D shapes. Layer
height is the distance axes need to move in positive z direction when one layer is done printing.

Tool ON, Tool OFF, PRIME, VIEW, and GO commands have been described in user guide 6.1.1 and 6.1.2. Please
see them for more information

6.1.4 GapLine Sequence

GapLine is a sequence that creates multiple rows of line segments in x direction with a gap between each segment.
Here is what the menu looks like:

26 Chapter 6. Sequence Menu

polychemprint3, Release 1.0

P1 through P5 inform users the basic information of the gapLine sequence. P6 controls printing speed which is how
fast axes moves when materials are been printed. P7 controls travel speed which is how fast axes move when no
material is been deployed but the sequence is still running for example, during printing of the gap between lines. P8
controls length of each line segment and P9 represents the size of gap between line segments. P10, number of rows, is
how many rows of line are there to be print. P11 controls spacing between each row, which is the distance axes moves
in y direction when done printing one row. P12, z-hop, value is the distance to move axes in positive z direction when
printing gap.

Tool ON, Tool OFF, PRIME, VIEW, and GO commands have been described in user guide 6.1.1 and 6.1.2. Please
see them for more information

6.1.5 Line Sequence

Line sequence allows single straight line to be created in either x or y direction. The menu looks like the following:

P1 through P5 inform users the basic information of the line sequence. P6 controls moving speed of axes when
printing. P7 lets user choose the direction of printed line. Two options are available: x or y direction. P8, line length,

6.1. The Sequence Library 27

polychemprint3, Release 1.0

represents distance axes move in printed direction. This unit is in mm.

Tool ON, Tool OFF, PRIME, VIEW, and GO commands have been described in user guide 6.1.1 and 6.1.2. Please
see them for more information

6.1.6 Pause Sequence

Pause Sequence lets axes to pause for a certain amount time before precede to next movements. Usually pause is used
to create time gap between sequences in a recipe. Here is what the pause menu looks like:

P1 through P5 inform users the basic information of the pause sequence. P6, pausetime, is the time to wait before
next command is send. For example, when circle sequence and line sequence are written into recipe to be execute
simultaneously, add pause sequence between them will allow axes to be stopped for certain time after completion of
circle. P7 gives user ability to control whether precede to next sequence after waiting time runs out. Typing Y in P7
will let program ask for user prompt to resume when pause time expired,and typing N will have program automatically
move on to next commands when pause time expired.

Tool ON, Tool OFF, PRIME, VIEW, and GO commands have been described in user guide **6.1.1 and 6.1.2.
Please see them for more information

6.1.7 Plate Sequence

Plate Sequence will print one line after another with each line at different row and eventually forms a plate. Its menu
is shown as follow:

28 Chapter 6. Sequence Menu

polychemprint3, Release 1.0

P1 through P5 inform users the basic information of the line sequence. P6 controls moving speed of axes when
printing. P7, line direction, controls the direction each line is printed. If it is set x, straight lines will be printed in x
direction and axes will move line pitch distance in y direction after the completion of each line. In order to form a
plate with not no gap present between lines, P8 should be set to the width of each line. If P7 is set to y, straight lines
will be printed in y direction with axes moving line pitch distancing in x direction after each line to create plate. P9
controls how long each line should. P10 is how many lines the sequence is going to print. The sequence also allows
altering of print speed or tool value after completion of each line. For example, by setting P14, speed increment, to
10 and set P15, speed operation, to +, printing speed value will be added by 10 after each line. This works the same
for tool value increment Currently, four speed operations are available, +, *, -, /. But please note that having large
value of increments could let to value out of bound and damage machine. Users should have a roughly estimating of
the final value of speed and tool value before printing.

Tool ON, Tool OFF, PRIME, VIEW, and GO commands have been described in user guide 6.1.1 and 6.1.2. Please
see them for more information.

6.1.8 Pyramid Sequence

Pyramid Sequence allows a pyramid to be created. Here is what the menu looks like:

6.1. The Sequence Library 29

polychemprint3, Release 1.0

P1 through P5 inform users the basic information of this sequence. P6 controls the speed of the axes movement and
unit is in mm/min. P7 through P9 control the width, length, and height of the cuboid. The unit for those value is in
mm. P10 controls layer height. Since this is a 3D object, 2D layers needs to be build up to form 3D shapes. Layer
height is the distance axes need to move in positive z direction when one layer is done printing.

Tool ON, Tool OFF, PRIME, VIEW, and GO commands have been described in user guide 6.1.1 and 6.1.2. Please
see them for more information

6.1.9 Rectangle Sequence

This sequence controls axes to moves followimg circumference of a rectangle, thus create a rectangle shape. Here is
what the menu looks like:

P1 through P5 inform users the basic information of the line sequence. P6 controls moving speed of axes when
printing. P7 and P8 controls the width and length of rectangle and the unit is in mm. Not width line is oriented in y
direction and length line is oriented in x direction.

Tool ON, Tool OFF, PRIME, VIEW, and GO commands have been described in user guide 6.1.1 and 6.1.2. Please
see them for more information

30 Chapter 6. Sequence Menu

polychemprint3, Release 1.0

6.1.10 SetToolStatus Sequence

This sequence is typically implemented in a recipe between two sequences to change the status or the value of tool.
Here is what it looks like:

P1 through P5 informs users the basic information of the line sequence. P6 lets user decide on tool status. There
choices are available: change tool status to on, off, or not change. P7 controls the new tool value. For example, if
circle sequence has juts been complete with a tool on value of 100, setting P7 to 200, will alter the tool on value of the
next sequence to be 200.

Not very certain what this sequence does

Tool ON, Tool OFF, PRIME, VIEW, and GO commands have been described in user guide 6.1.1 and 6.1.2. Please
see them for more information

6.1.11 Triangle Sequence

Triangle Sequence allows a triangle shape to be created. Here is what the menu looks like:

P1 through P5 inform users the basic information of the line sequence. P6 controls moving speed of axes when
printing. The unit is in mm/min. In order to create a unique triangle, three pieces of information are needed: two sides
length and the angle they formed. P7 through P9 control those information. For side lengths, units are in mm. For
angle, the unit is in degree. P10, steps in x and y, is necessary due to the axes’ limited ability of only creating straight

6.1. The Sequence Library 31

polychemprint3, Release 1.0

line. Since one side of triangle has to be diagonal line. To create it, axes needs to be move in small steps in x and y
direction. The small the value is, the more accurate the triangle is going to be.

Tool ON, Tool OFF, PRIME, VIEW, and GO commands have been described in user guide 6.1.1 and 6.1.2. Please
see them for more information

6.2 Importing GCode Sequences

PCP3 can natively import GCode generated by external slicer programs through specific GcodeFile sequences. For
2D (single layer) patterns, it is often easier to generate GCode from a vector image in the free software InkScape. For
3D (multilayer) patterns, Cura and slic3r are good options for converting .STL CAD files to Gcode. In both cases, it
is very important to choose slicing settings that will ‘play nice’ with PCP3. For further details and tutorials, see the
specific sequence pages below.

6.2.1 GcodeFileInkScape Sequence

This sequence allows locally stored Gcode file obtained through InkScape software to be imported into poly-
chemprint3.Here is what menu of this sequence looks like:

P1 through P5 inform user the basic information of the GcodeFileInkScape sequence. P6 gives users options to select
the objective file. Users can either type in the full file path or just type in File to opens up a GUI window and choose
the matching file like follow:

32 Chapter 6. Sequence Menu

polychemprint3, Release 1.0

P7 controls moving speed of axes in x and y direction when printing and P8 represents the speed of axes when tool is
not print but sequence is still running. P9 is the speed of axes when traveling in z direction. The unit regarding speed
is in mm/min. P10, Z hop height, controls the distance axes moves in positive z direction when two lines are crossed.
Axes need to be move up to avoid collision of material, thus called hop height. The unit is in mm.

6.2.2 Inkscape 2D GCODE Tutorial

The free and open source vector image software Inkscape can be used to generate G-code for complex 2D patterns
that can then be imported into polychemprint3. We will be using the plugin GCodeTools (included by default with
Inkscape).

Below is a step-by-step tutorial for creating a vector image and generating PCP3-compatible GCode.

Step 1: Set Canvas Dimensions

a) Open InkScape

b) Click File -> Document Properties

c) In the window that appears, set the page size and units. Note: the bottom left corner is the (0,0) coordinate.

Step 2: Draw your pattern (ex: text, shapes, and bezier curves)

a) Create a layer for your pattern (shift + ctrl + L) to open the layer window.

b) From the tools panel at left, choose either the text tool or one of the drawing tools and draw your pattern.

c) For complex patterns, it can be helpful to paste a picture into a layer below your working layer, set it to ~60%
opacity, lock it, and then ‘trace’ a pattern on your working layer with bezier curves.

6.2. Importing GCode Sequences 33

Inkscape.org
https://github.com/cnc-club/gcodetools

polychemprint3, Release 1.0

d) Note: There is technically a way to auto-generate paths from non-vector drawings, but I have not been able to get
it to work. After import an image into Inkscape, you can click Path-> Trace Bitmap. In the window that appears,
choose a tracing mode and your path will be generated. Unfortunately, all modes generate ‘double-paths’ except
centerline tracing, which just crashes (as of 12/17/20).

Step 3: Convert to Path

a) Select all of your ‘artwork’ in the working layer.

b) From the top toolbar, choose Path -> Object to path

c) Before you proceed, go to node view (n) and try to simplify the nodes as much as you can while maintaining
pattern fidelity. Having a huge number of nodes will lead to having many many tiny steps that the printer will
execute, increasing pritn time and reducing stability. If you have overlapping nodes (e.g., two lines coming to a
point), use the ‘join nodes’ tool to combine them.

d) At this stage, your artwork is complete. Clone this layer to a new layer above this one and hide and lock all
sublayers.

Step 4: Setup Orientation Points

a) From the top toolbar, choose Extensions -> GCodeTools -> Orientation Points.

b) In the window that appears:

1. Choose 2-points mode

2. Set Z surface to 0.000

3. Set Z-depth to -1.

c) Click Apply when you are done and you should see two coordinates point appearing on your drawing sheet.
One on the bottom left corner with coordinates of (0,0; 0,0; 0,0). The other one on the on the bottom margin of
drawing sheet with coordinates of (100.0; 0.0; -1.0)

Step 5: Setup the Tool

a) From the top toolbar, choose Extensions -> GCodeTools -> Tools Library.

b) In the window that appears, select the ‘default’ tool and press Apply.

c) A text panel will appear on top of your drawing. Move it to the side with the selection tool (S) and then select
the text editing tool (T).

d) Edit the following parameters in the text panel.

1. Set diameter to your tool diameter (optional).

2. Set feed to 9999.

3. Set penetration feed to 9998.

4. Set passing feed to 1000.

Step 6: Enter G-code processing parameters

a) From the top toolbar, choose Extensions -> GCodeTools -> Path-to-Gcode. A window with 4 tabs will appear.

b) In the “Path to GCode” tab, set the cutting order to “pass by pass” and use depth function d.

c) In the “Options” tab, set the ‘Offset along Z axis’ to 1.00. Also, check the “Select all paths if nothing is selected”
checkbox.

d) In the “Preferences” tab:

1. Enter the filename for your exported G-code file.

2. Enter the full path to the export directory in the ‘directory’ field.

34 Chapter 6. Sequence Menu

polychemprint3, Release 1.0

3. Set ‘Z safe height for G00 move over blank’ to 2.00’

e) Generate log files if you would like.

f) At this stage, everything is ready to generate a gcode file. Save another copy of this file and delete all sublayers.

Step 7: Generate and export G-code File

a) With the “Path-to-Gcode” tab of the “Path-to-Gcode” panel open, click apply.

b) If a warning appears that no paths were selected, just press ok and GCodeTools will attempt to use all paths.

Step 8: Validate GCode File [Strongly recommended]

a) Open the G-code file that you have generated and look through it for obvious errors such as:

1. No/ very few commands -> Likely the plugin didnt select your drawing, or your drawing wasnt in the top
layer.

2. Printing steps aren’t at Z0, travel steps arent at Z3. -> you have made a mistake in steps 4 or 6.

b) Use a program like CAMotics or NC Viewer to visually inspect the toolpath BEFORE you try it on the printer.

6.2.3 GcodeFile3DSlicer Sequence

This sequence allows locally stored Gcode file obtained through InkScape software to be imported into poly-
chemprint3.Here is what menu of this sequence looks like:

P1 through P5 are basic information describing the sequence. P6 gives users options to select the .gcode file. Users
can either type in the full file path or type in “File” to opens up a GUI window and choose the matching file like follow:

P7 - P9 Allow the user to set the tool on, off, and travel values. Upon importing FDM Gcode, the program automati-
cally converts from extruder positions to tool on/off triggers.

6.2. Importing GCode Sequences 35

camotics.org
https://ncviewer.com/

polychemprint3, Release 1.0

6.2.4 Cura 3D GCode Tutorial

Cura is a free software that converts CAD files (commonly .STL) into GCode for FDM printers. We do not give an
exhaustive tutorial of Cura here, but instead briefly outline the process and note the parameters you must select in
order for PCP3 to properly import GCode.

Steo 0: Printer/ Program Settings

Either create a “Custom FFF Printer” or modify your 3D printer’s profile to reflect the following.

1. Delete any start or end Gcode.

2. Set the origin at center of the bed.

3. Select Marlin as the Gcode flavor.

4. Set the nozzle diameter to the diameter of the nozzle you are using (or feature size of LASER etch lines etc.)

Step 1: Import STL file

1. Click File on the top bar and select Open Files

2. Select the STL file you want to generate G-code from .

3. Properly adjust orientation of your object. Make sure it is in contact with the bed.

4. In the print settings make the following changes:

a. Set the layer height to the height of your material under the desired printing conditions

b. Set the print speed (for all parts) to be the desired printing speed.

c. Turn off build plate adhesion tools like skirts or brims (unless you want them)

Step 2: Slice Object

1. After done adjusting parameters, the bottom right corner will state “Ready to Slice”

2. Please wait until it states “Ready to Save to File” and precede to step 3

Step 3: Generate G-code

1. Click “Save to File” button on the bottom right corner

2. Select the desired directory and click save

3. GCODE file is generated.

36 Chapter 6. Sequence Menu

CHAPTER 7

Recipe Menu

Recipe are a combination of sequences to be executed in series. The constituent sequences each can take on their own
parameters and duplicates are allowed. This can be very useful for combinatorial screening, or even just for printing a
batch of identical samples in one long run, without user intervention. It is also possible to include ‘interrupt’ sequences
that prompt for user input, e.g. to confirm the nozzle is clean/ swap out substrates/ etc. between prints. Because recipes
can become quite long, they are stored as text files (.yaml) and only one recipe is fully loaded into RAM at a time, the
“active recipe”. For convenience, basic details of all recipes can be seen from the loading screen.

Note: Recipes are NOT meant to be created outside of PCP3. Although it is possible to edit .yaml files, it is not
encouraged.

The recipe menu is shown below:

At program launch, no recipe is loaded and thus sequences cannot be added.

7.1 Creating a new Recipe

To build a new recipe, type 3, Build a New Recipe, in Recipe Menu and the program will ask for user input regarding
the name and description of the new recipe. The newly created recipe will be empty of any sequences. Picture below

37

polychemprint3, Release 1.0

shows the procedure on create a new recipe (commands entered are boxed by red). By default, the new recipe becomes
the active recipe.

7.2 Modifying/Saving Active Recipe

Type 2 in Recipe Menu to access the Modify/Save Active Recipe menu and users can adjust that recipe by remove/add
sequences, change parameters, or saving to the yaml file.

Edit basic information One bottom portion of Modify/Save Active Recipe menu, information about activated recipe
is shown. Description information includes name, description, creation date are shown. To modify these infor-
mation, type 0 in terminal to edit text in P0 through P2(commands entered are boxed by red).

38 Chapter 7. Recipe Menu

polychemprint3, Release 1.0

Add Sequence To add a sequence, type 1 in the terminal and user will be brought to print sequence menu to choose
a sequence to add. Type the code of the sequence user want and the matching sequence menu will be displayed
for user to edit parameters. (For more detailed information about sequences, please see sequence menu). After
finishing modifying parameters, type in ADD in terminal to add that sequence to sequence list, program will ask
for user input about which index should the new sequence be occupying. This decides on the executing order
sequences. Pictures below reveals process of add line sequence to a recipe (commands entered are boxed by
red).

1. Type in 1 to add sequence command

2.Select a sequence(in this example, select line sequence)

7.2. Modifying/Saving Active Recipe 39

polychemprint3, Release 1.0

3. Modify line sequence parameter and type in command add

4. Select the index to be occupied by new sequence

Edit Sequence To edit a sequence that is already in sequence list, type 2 in terminal under Modify/Save Active Recipe
menu. The terminal will ask for user input of sequence code (in the form of S#). Select the sequence wanted

40 Chapter 7. Recipe Menu

polychemprint3, Release 1.0

to be modified and the matching sequence menu will be brought up. Edit parameters and type in q to quit the
sequence menu. The editing process of sequence is complete. Following pictures shows a process of editing
line sequence (commands entered are boxed by red).

1.Select Edit Sequence

2.Modify parameters

3.Quit the sequence menu

7.2. Modifying/Saving Active Recipe 41

polychemprint3, Release 1.0

Remove Sequence To remove a sequence in sequence list, type 3, Remove sequence, in terminal under Modify/Save
Active Recipe menu and then type in the index of sequence that needs to be removed. The following picture
shows the removal of line sequence (commands entered are boxed by red).

Recorder Sequence To change the order of sequence in recipe, type 4, Recorder Sequence, in terminal under Mod-
ify/Save Active Recipe menu and type the index of sequence that need to be changed and then typed the index
that sequence is going to occupy. A single re-order process is complete. This re-order procedure will be con-
tinued until user type q to quit the re-order sequence function. The following picture shows the change order
process (commands entered are boxed by red).

42 Chapter 7. Recipe Menu

polychemprint3, Release 1.0

Save Modifications After finishing editing recipe, users must save the modified sequence list to yaml file in recipe
folder. Otherwise, if the program is closed or reset, changes made will not no longer exist. To save a recipe,
type save in terminal under Modified/Save Active menu. (Note, after adding a sequence and quit the Sequence
Menu, program will not return to Modified/Save Active menu, please remember to return to Main Menu, and
go to Recipe Menu, and go to Modified/Save Active Recipe menu in order to do save command)

Quit Modify/Save Active Recipe Menu To exit out of the Hardware Menu, type q in the command and you will be
in the Recipe Menu.

7.3 Browse/Load Stored Recipes

Type command 1 in the Recipe Menu will allow program to search through polychemprint3/recipe folder and display
names, creation dates and descriptions of recipes stored locally.

7.3. Browse/Load Stored Recipes 43

polychemprint3, Release 1.0

By entering a recipe code(1,2,3,4,etc.), users can choose to activate a recipe in the program. The current active recipe
name will also be shown in recipe menu (boxed in yellow).

7.4 View Recipe Details

To view information on activated recipe, type view under Recipe Menu and terminal will deliver information of name,
description, and also the contents of the active recipe.

7.5 Execute Recipe Menu

To execute a recipe, first type Prime in terminal under Recipe Menu to convert active recipe into python code. Then
type in GO to begin recipe execution. Before the recipe begins, it will prompt for a log file name to deposit full recipe
details into. Logs are saved as text files in the polychemprint3/Logs folder.

44 Chapter 7. Recipe Menu

CHAPTER 8

PCP3 Package Overview

PCP3 is written in Python following object-oriented programming (OOP) principles, meaning that data and methods
are organized in terms of distinct “objects” with clearly defined attributes and behaviors, which are only instantiated
(given specific values) in the __main__.py method. This modular approach (see Figure below) greatly simplifies
the process of adding additional hardware and sequences by isolating these blocks of code into distinct submodules
(folders) that are separate from the more complex user interface and main methods. In order to add a new sequence
to the program, for example, the user can simply clone one of the existing light blue .py files, rename it and modify
the contents to contain the desired motion/tool commands, and place it in the sequence folder. On startup, PCP3
automatically attempts to load any new sequences, axes, or tool .py files, after checking for compiler errors.

45

polychemprint3, Release 1.0

PCP3 also takes advantage of the OOP concept of inheritance to streamline addition of new code files to the program.
The grey boxes in the Figure are effectively blueprints (‘Abstract Base Classes’, in Python) for the class declarations
(light blue .py files) that inherit from them (signified by grey arrows from the parent to the child class). This system
enforces a standardized format for each type of code file. All ‘sequences’ are required to behave following the rules
of the parent sequenceSpec class to compile properly, or else they are not loaded when PCP3 starts. In addition to
minimizing runtime errors, this approach provides another way to isolate the user from having to deal with repetitive
boilerplate code common across many different objects. For example, there is no need to explicitly write logging
methods for each sequence, because they already inherit them from the loggerSpec Abstract Base Class. Finally, the
main method contains the data structures which hold all of the instantiated objects as well as containing all Menu
classes and driving the user interface.

46 Chapter 8. PCP3 Package Overview

CHAPTER 9

Sphinx Autodocumentation

Documentation generated using the sphinx autodoc method.

9.1 polychemprint3.commandLineInterface

9.1.1 polychemprint3.commandLineInterface.ioElementSpec module

Contains ioElementSpec Abstract Base Class.

First created on Sun Oct 20 00:03:21 2019
Revised (dd/mm/yyyy): 20/12/2020 - BP
Author: Bijal Patel

class polychemprint3.commandLineInterface.ioElementSpec.ioElementSpec(name,
**kwargs)

Bases: abc.ABC

Specifies the interface for CLI menus/text/etc.

io_Operate()
Do the primary purpose of the CLI element.

Returns an optional flag which either reflects how operation went, or is direction for future CLI
operations.

Return type str

9.1.2 polychemprint3.commandLineInterface.ioMenuSpec module

Contains ioMenuSpec Abstract Base Class.

47

polychemprint3, Release 1.0

First created on Sun Oct 20 00:03:21 2019
Revised (dd/mm/yyyy): 20/12/2020 - BP
Author: Bijal Patel

class polychemprint3.commandLineInterface.ioMenuSpec.ioMenuSpec(menuTitle,
menuItems,
menuDesc=”,
menuIn-
struc=’Choose
from the
following
menu items:’,
lastCmd=”,
memCmd=”,
**kwargs)

Bases: polychemprint3.commandLineInterface.ioElementSpec.ioElementSpec, abc.
ABC

Specifies the interface for CLI menus.

ioMenu_printMenu(showStoredCmds=True)
Prints formatted menu options from menuItems dict.

ioMenu_updateStoredCmds(lastCmd, memCmd)
Updates stored commands local to this menu item from inputs.

Parameters

• lastCmd (str) – specifying the last command entered

• memCmd (str) – specifying the command saved to memory

io_Operate()
Performs menu operations and loops on user input. :returns: Title of next menu to present. :rtype: str

9.1.3 polychemprint3.commandLineInterface.ioTextPanel module

Contains ioTextPanelSpec Abstract Base Class.

First created on Sun Oct 20 00:03:21 2019
Revised: 20/10/2019 00:34:27
Author: Bijal Patel

class polychemprint3.commandLineInterface.ioTextPanel.ioTextPanel(panelTitle,
full-
FilePath,
**kwargs)

Bases: polychemprint3.utility.fileHandler.fileHandler, polychemprint3.
commandLineInterface.ioElementSpec.ioElementSpec

Specifies the interface for CLI menus.

io_Operate()
Prints formatted text from file.

48 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

9.2 polychemprint3.data

9.2.1 Subpackages

polychemprint3.data.TextPanels package

Module contents

9.2.2 Module contents

9.3 polychemprint3.axes

9.3.1 polychemprint3.axes.axes3DSpec module

Specifies 3D Axes classes, implementations are for specific printers/stages.

First created on Sat Oct 19 20:39:58 2019
Revised: 23/10/2019 14:06:59
Author: Bijal Patel

class polychemprint3.axes.axes3DSpec.Axes3DSpec(name, __verbose__=0, pos-
Mode=’absolute’, **kwargs)

Bases: polychemprint3.utility.loggerSpec.loggerSpec, abc.ABC

Abstract Base Class for 3D Axes.

activate()
Makes required connections and returns status bool.

Returns True if ready to use False if not ready

Return type bool

deactivate()
Closes communication and returns status bool.

Returns True if ready to use False if not ready

Return type bool

getAbsPosXY()
Gets the current position (absolute) and return XY positions.

Parameters command (String) – Gcode to write to axes

Returns [X, Y] X and Y positions as strings

Return type String

move(gcodeString)
Moves to the specified gcodeString position.

Parameters gCodeString (String) – Motion command in terms of Gcode G0/G1/G2/G3
supported

9.2. polychemprint3.data 49

polychemprint3, Release 1.0

poll(command)
Sends message to axes and returns response.

Parameters command (String) – to write to axes

Returns Response from axes

Return type String

sendCmd(command)
Writes command to axes device when ready.

Parameters command (String) – to write to axes

setPosMode(newPosMode)
Sets positioning mode to relative or absolute.

Parameters newPosMode (String) – Positioning mode to use for future move cmds

setPosZero()
Sets the current position (absolute) to (0,0,0).

9.3.2 polychemprint3.axes.lulzbotTaz6_BP module

Implements axes3DSpec for lulzbot taz 6 with modified firmware.

First created on Sat Oct 19 20:39:58 2019
Revised: 23/10/2019 14:06:59
Author: Bijal Patel

class polychemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP(name=’LulzbotTaz6’,
posMode=’relative’, de-
vAddress=’/dev/ttyACM0’,
baudRate=115200, comm-
sTimeOut=0.001, __ver-
bose__=1, firmware-
Vers=’BP’)

Bases: polychemprint3.utility.serialDeviceSpec.serialDeviceSpec,
polychemprint3.axes.axes3DSpec.Axes3DSpec

Implemented interface for Lulzbot Taz 6 with BP modified firmware.

activate()
Makes required connections and returns status bool.

Returns True if ready to use False if not ready

Return type bool

deactivate()
Closes communication and returns status bool.

Returns True if closed succesfully False if failed

Return type bool

getAbsPosXY()
Gets the current position (absolute) and return XY positions.

Parameters command (String) – Gcode to write to axes

50 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

Returns [X, Y] X and Y positions as strings

Return type String

handShakeSerial()
Perform communications handshake with serial device.

Returns

• [1, “Handshake Successful”] – success occured

• [0, ‘Handshake Failed, Rcvd + message received’] – failure occured

• [-1, “Error (Handshake with Tool Failed + error text”]) – Error received

move(gcodeString)
Moves axes by set amount.

Parameters

• gCodeString (String) – Motion command in terms of Gcode G0/G1/G2/G3 sup-
ported

• Returns (|) –

• none (|) –

poll(command)
Sends message to axes and parses response.

Parameters command (String) – to write to axes

Returns Response from axes

Return type String

readTime()
Reads in from serial device until timeout.

Returns All text read in, empty string if nothing

Return type String

sendCmd(command)
Writes command to axes device when ready.

Parameters command (String) – to write to axes

Returns Response from axes

Return type String

setPosMode(newPosMode)
Sets positioning mode to relative or absolute.

Parameters newPosMode (String) – Positioning mode to use for future move cmds

setPosZero()
Sets current axes position to absolute (0,0,0).

startSerial()
Creates pySerial device.

Returns

• [1, “Serial Device Started successfully”] – started succesfully

• [-1, ‘Failed Creating pySerial. . . ’] – could not start

9.3. polychemprint3.axes 51

polychemprint3, Release 1.0

stopSerial()
Closes serial devices.

Returns

• [1, “Terminated successfully”] – started succesfully

• [-1, “Error (Serial Device could not be stopped + error text”])

waitReady()
Looks for “ok” in input, waits indefinitely.

Returns All text read in, empty string if nothing

Return type String

writeReady(command)
Sends command only after rece0iving ok message.

Parameters
command, string to write to axes

Returns
inp, String read in

9.3.3 polychemprint3.axes.nullAxes module

Implements axes3DSpec as null axes (returns successful to all).

First created on Sat Oct 19 20:39:58 2019
Revised: 23/10/2019 14:06:59
Author: Bijal Patel

class polychemprint3.axes.nullAxes.nullAxes(name=’nullAxes’, posMode=’relative’,
__verbose__=0)

Bases: polychemprint3.axes.axes3DSpec.Axes3DSpec

Implementing axes3D for null case.

activate()
Makes required connections and returns status bool.

Returns True if ready to use False if not ready

Return type bool

deactivate()
Closes communication and returns status bool.

Returns True if closed succesfully False if failed

Return type bool

getAbsPosXY()
Gets the current position (absolute) and return XY positions.

52 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

Parameters command (String) – Gcode to write to axes

Returns [X, Y] X and Y positions as strings

Return type String

move(gcodeString)
Initializes Axes3D object.

Parameters

• gCodeString (String) – Motion command in terms of Gcode G0/G1/G2/G3 sup-
ported

• Returns (|) –

• none (|) –

poll(command)
Sends message to axes and parses response.

Parameters command (String) – to write to axes

Returns Response from axes

Return type String

sendCmd(command)
Writes command to axes device when ready.

Parameters command (String) – to write to axes

setPosMode(newPosMode)
Sets positioning mode to relative or absolute.

Parameters newPosMode (String) – Positioning mode to use for future move cmds

setPosZero()
Sets current axes position to absolute (0,0,0).

9.4 polychemprint3.tools

9.4.1 polychemprint3.tools.laser6W module

Implements the Tool base class for Danny’s arduino-uno controlled 6W LASER.

First created on Wed Feb 12 2020
Revised: 12/02/2020
Author: Bijal Patel

class polychemprint3.tools.laser6W.laser6W(name=’BlueLASER6W’, units=’percent’,
devAddress=’/dev/ttyACM1’, bau-
dRate=115200, commsTimeOut=0.001,
__verbose__=1, **kwargs)

Bases: polychemprint3.utility.serialDeviceSpec.serialDeviceSpec,
polychemprint3.tools.toolSpec.toolSpec

Implements the Tool base class for Danny’s 6W LASER.

9.4. polychemprint3.tools 53

polychemprint3, Release 1.0

activate()
Makes required connections and returns status bool.

Returns True if ready to use False if not ready

Return type bool

checkIfSerialConnectParamsSet()
Goes through connection parameters and sees if all are set.

Returns True if all parameters are set, false if any unset

Return type bool

deactivate()
Closes communication and returns status bool.

Returns True if deactivated False if not deactivated

Return type bool

disengage()
Toggles Dispense off.

Returns

• [1, “Dispense Off”]

• [0, “Error (Dispense already off”])

• [-1, ‘Failed engaging dispense ‘ + inst.__str__()]

engage()
Toggles Dispense on.

Returns

• [1, “Dispense On”]

• [0, “Error (Dispense Already On”])

• [-1, ‘Failed engaging dispense ‘ + inst.__str__()]

getState()
Returns active state of tool.

Parameters
none

Returns
[1, “Tool On”]
[0, “Tool Off”]
[-1, “Error: Tool activation state cannot be determined + Error]

handShakeSerial()
Perform communications handshake with Tool.

Returns

• [1, “Handshake Successful”]

54 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

• [0, ‘Handshake Failed, Received (+ message received’]) – if unexpected input received

• [-1, “Error (Handshake with Tool Failed + error text”])

loadLogSelf(jsonString)
loads json log back into dict.

Parameters jsonString (String) – json string to be loaded back in

readTime()
Reads in from serial device until timeout.

Returns

• [1, inp String of all text read in, empty string if nothing]

• [0, ‘Read failed + Error’ if exception caught]

setValue(value)
Set Laser PWM value in percent 1-100.

Parameters value (String) – New value of pressure out of 100

Returns

• [output of writeSerialCommand]

• [-1, “Error (value could not be set for LASER + error text”])

startSerial()
Creates and connects pySerial device.

Returns

• [1, “Connected Succesfully to Serial Device”]

• [0, ‘Not all connection parameters set’]

• [-1, “Error (Could not connect to serial device: + error text”])

stopSerial()
Terminates communication.

Returns

• [1, “Terminated successfully”]

• [-1, “Error (Tool could not be stopped + error text”])

writeLogSelf()
Generates json string containing dict to be written to log file.

Returns logJson – log in json string format

Return type String

9.4.2 polychemprint3.tools.nullTool module

Implements the Tool base class for a null Tool [no action, returns true].

First created on 13/11/2019 13:33:28
Revised: 17/10/20
Author: Bijal Patel

9.4. polychemprint3.tools 55

polychemprint3, Release 1.0

class polychemprint3.tools.nullTool.nullTool(name=’nullTool’, units=’null’, devAd-
dress=’unset’, baudRate=’unset’, comm-
sTimeOut=0.5, __verbose__=0, **kwargs)

Bases: polychemprint3.tools.toolSpec.toolSpec

Implements the toolSpec abstract base class for a null tool, a virtual hardware device that only writes to the
terminal.

activate()
To be called in main.py to load as active tool. Makes required serial connections and returns status as
True/False.

Returns True if tool serial connection made and tool is ready to use False if error generated and
tool is not ready for use

Return type bool

deactivate()
To be called in main.py to unload as active tool. Closes serial communication and returns status as
True/False.

Returns True if tool serial connection destroyed and tool is succesfully disabled. False if error
generated and serial communication could not be suspended.

Return type bool

disengage()
Turn tool primary action off (stops dispense/LASER beam off, etc).

Returns

status – First element (int) indicates whether disengage was successful (1), already off (0),
or error (-1).

Second element (String) provides text explanation.

Return type two-element list

engage()
Turn tool primary action on (dispense/LASER beam on, etc).

Returns

status – First element (int) indicates whether engage was successful (1), already on (0) or
error (-1)

Second element (String) provides text explanation.

Return type two-element list

getState()
Returns the current dispense/action state (on/off).

Returns

status – First element indicates whether tool is on(1) or off(0) or error(-1).

Second element provides text explanation.

Return type two-element list

loadLogSelf(yamlString)
loads json log back into dict.

Parameters yamlString (String) – yaml string to be loaded back in

56 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

setValue(value)
Set the primary tool action value (e.g., Laser power, extruder pressure, etc.).

Parameters value (String) – The new value of the parameter as a string, expressed at arbi-
trary precision/ without leading zeros. Conversion to hardware specific format occurs inter-
nally. e.g., (use 23.456 NOT 0234”)

Returns

status – First element (int) indicates whether value setting was successful (1) or error (-1).

Second element provides text explanation.

Return type two-element list

writeLogSelf()
Generates yaml string containing dict to be written to log file.

Returns logyaml – log in yaml string format

Return type String

9.4.3 polychemprint3.tools.toolSpec module

Contains toolSpec Abstract Base Class.

First created on Sun Oct 20 00:03:21 2019
Revised: 10/17/2020
Author: Bijal Patel

class polychemprint3.tools.toolSpec.toolSpec(name, units, __verbose__, **kwargs)
Bases: polychemprint3.utility.loggerSpec.loggerSpec, abc.ABC

Abstract Base Class for all dispensing/writing tool drivers.

activate()
To be called in main.py to load as active tool. Makes required serial connections and returns status as
True/False.

Returns True if tool serial connection made and tool is ready to use False if error generated and
tool is not ready for use

Return type bool

deactivate()
To be called in main.py to unload as active tool. Closes serial communication and returns status as
True/False.

Returns True if tool serial connection destroyed and tool disabled. False if error generated and
serial communication not suspended.

Return type bool

disengage()
Turn tool primary action off (stops dispense/LASER beam off, etc).

Returns status – First element (int) indicates whether disengage was successful (1), already off
(0), or error (-1). Second element (String) provides text explanation.

Return type two-element list

9.4. polychemprint3.tools 57

polychemprint3, Release 1.0

engage()
Turn tool primary action on (dispense/LASER beam on, etc).

Returns status – First element (int) indicates whether engage was successful (1), already on (0)
or error (-1) Second element (String) provides text explanation.

Return type two-element list

getState()
Returns the current dispense/action state (on/off).

Returns status – First element indicates whether tool is on(1), off(0) or error(-1). Second ele-
ment provides text explanation.

Return type two-element list

loadLogSelf(yamlString)
Loads yaml log back into __dict__.

Parameters yamlString (String) – yaml string to be loaded back in

setValue(value)
Set the primary tool action value (e.g., Laser power, extruder pressure, etc.).

Parameters value (String) – The new value of the parameter as a string, expressed at arbi-
trary precision/ without leading zeros. Conversion to hardware specific format occurs inter-
nally. e.g., (use 23.456 NOT 0234”)

Returns status – First element (int) indicates whether value setting was successful (1) or error
(-1). Second element provides text explanation.

Return type two-element list

writeLogSelf()
Generates yaml string containing __dict__ to be written to log file.

Returns log in yaml string format

Return type String

9.4.4 polychemprint3.tools.ultimusExtruder module

9.5 polychemprint3.recipes

9.5.1 polychemprint3.recipes.recipe module

Specifies modular recipe protocol to link series of sequences

First created on Mon May 11 17:27:00 2020
Revised:
Author: Bijal Patel

58 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

class polychemprint3.recipes.recipe.recipe(name: str = ’NoRecipeNameSet’, descrip-
tion: str = ’NoRecipeDescriptionSet’,
dateCreated: str = ’NoDateSet’, axes: <mod-
ule ’polychemprint3.axes.axes3DSpec’ from
’/home/docs/checkouts/readthedocs.org/user_builds/polychemprint3/checkouts/latest/polychemprint3/axes/axes3DSpec.py’>
= <polychemprint3.axes.nullAxes.nullAxes
object>, tool: poly-
chemprint3.tools.toolSpec.toolSpec = <poly-
chemprint3.tools.nullTool.nullTool object>,
seqList=None, __verbose__: bool = 0,
**kwargs)

Bases: polychemprint3.utility.fileHandler.fileHandler, polychemprint3.
utility.loggerSpec.loggerSpec

Class for recipes - a series of sequences joined together

addSeq(beforeIndex: int, newSeq: polychemprint3.sequence.sequenceSpec.sequenceSpec)
Adds a copy of the provided sequence to the seqList. :param beforeIndex: :type beforeIndex: int :param
newSeq: :type newSeq: sequenceSpec

deleteSeq(index: int)
Adds a copy of the provided sequence to the seqList. :param index: :type index: int

genRecipe()
Loads print sequence into a list into cmdList attribute.

Returns whether successfully reached the end or not

Return type bool

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

operateRecipe(axesIn, toolIn)
Performs print sequence. :returns: Whether recipe successfully completed or not :rtype: bool

reorderSeq(currentIndex: int, newIndex: int)
Moves sequence from currentIndex to newIndex in seqList. :param currentIndex: :type currentIndex: int
:param newIndex: :type newIndex: int

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

class polychemprint3.recipes.recipe.recipeStub(name: str = ’NoRecipeNameSet’, de-
scription: str = ’NoRecipeDescription-
Set’, dateCreated: str = ’NoDateSet’,
**kwargs)

Bases: polychemprint3.utility.fileHandler.fileHandler

Class for recipe stubs, just the name, description, path info

9.5. polychemprint3.recipes 59

polychemprint3, Release 1.0

9.6 polychemprint3.sequence

9.6.1 polychemprint3.sequence.sequenceSpec module

Specifies modular pre-written motion and dispense sequences for common prints.

First created on Sun Oct 20 00:08:15 2019
Revised (dd/mm/yyyy): 01/18/2021 - BP
Author: Bijal Patel

class polychemprint3.sequence.sequenceSpec.seqParam(name, value, unit, helpString)
Bases: object

Base Class for parameters used in sequences.

class polychemprint3.sequence.sequenceSpec.sequenceSpec(axes: poly-
chemprint3.axes.axes3DSpec.Axes3DSpec
= <poly-
chemprint3.axes.nullAxes.nullAxes
object>, tool: poly-
chemprint3.tools.toolSpec.toolSpec
= <poly-
chemprint3.tools.nullTool.nullTool
object>, dictParams: dict
= None, __verbose__:
bool = 0, tool2: poly-
chemprint3.tools.toolSpec.toolSpec
= <poly-
chemprint3.tools.nullTool.nullTool
object>, tool3: poly-
chemprint3.tools.toolSpec.toolSpec
= <poly-
chemprint3.tools.nullTool.nullTool
object>, **kwargs)

Bases: polychemprint3.utility.loggerSpec.loggerSpec, abc.ABC

Abstract Base Class for predefined print sequences.

genSequence()
Loads print sequence into a list into cmdList attribute.

Returns whether successfully reached the end or not

Return type bool

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

operateSeq(**kwargs)
Performs print sequence. :returns: Whether sequence successfully completed or not :rtype: bool

updateParams()

60 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.6.2 polychemprint3.sequence.basicMove module

Moves Axes a set distance in X,Y,Z at set speed

First created on 05/05/2020
Revised: 10/8/2020
Author: Bijal Patel

class polychemprint3.sequence.basicMove.basicMove(axes: <module ’poly-
chemprint3.axes.axes3DSpec’ from
’/home/docs/checkouts/readthedocs.org/user_builds/polychemprint3/checkouts/latest/polychemprint3/axes/axes3DSpec.py’>
= <poly-
chemprint3.axes.nullAxes.nullAxes
object>, tool: poly-
chemprint3.tools.toolSpec.toolSpec
= <poly-
chemprint3.tools.nullTool.nullTool
object>, **kwargs)

Bases: polychemprint3.sequence.sequenceSpec.sequenceSpec

Sequence for a basic translation in a given direction

genSequence()
Loads print sequence into a list into cmdList attribute.

Returns Whether Command Generation Sequence reaches the end or not.

Return type bool

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.6.3 polychemprint3.sequence.pause module

Sequence for introducing a pause. The length of time can be set, or it can resume on user input.

First created (dd/mm/yyyy): 05/05/2020
Revised (dd/mm/yyyy): 17/12/2020 - BP

9.6. polychemprint3.sequence 61

polychemprint3, Release 1.0

Author: Bijal Patel

class polychemprint3.sequence.pause.pause(axes: polychemprint3.axes.axes3DSpec.Axes3DSpec
= <polychemprint3.axes.nullAxes.nullAxes
object>, tool: poly-
chemprint3.tools.toolSpec.toolSpec = <poly-
chemprint3.tools.nullTool.nullTool object>,
**kwargs)

Bases: polychemprint3.sequence.sequenceSpec.sequenceSpec

Sequence for introducing a pause. The length of time can be set, or it can resume on user input.

genSequence()
Loads print sequence into a list into cmdList attribute.

Returns whether successfully reached the end or not

Return type bool

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.6.4 polychemprint3.sequence.setToolState module

Sequence for changing tool value or dispense state.

First created (dd/mm/yyyy): 05/05/2020
Revised (dd/mm/yyyy): 17/12/2020 - BP
Author: Bijal Patel

class polychemprint3.sequence.setToolState.setToolState(axes: poly-
chemprint3.axes.axes3DSpec.Axes3DSpec
= <poly-
chemprint3.axes.nullAxes.nullAxes
object>, tool: poly-
chemprint3.tools.toolSpec.toolSpec
= <poly-
chemprint3.tools.nullTool.nullTool
object>, **kwargs)

Bases: polychemprint3.sequence.sequenceSpec.sequenceSpec

Sequence for changing tool value or dispense state.

genSequence()
Loads print sequence into a list into cmdList attribute.

Returns whether successfully reached the end or not

62 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

Return type bool

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.6.5 polychemprint3.sequence.gapLine module

Predefined print sequence for gapLines.

First created on 13/11/2019 14:41:31
Revised: 5/3/20
Author: Bijal Patel

class polychemprint3.sequence.gapLine.gapLine(axes: <module ’poly-
chemprint3.axes.axes3DSpec’ from
’/home/docs/checkouts/readthedocs.org/user_builds/polychemprint3/checkouts/latest/polychemprint3/axes/axes3DSpec.py’>
= <poly-
chemprint3.axes.nullAxes.nullAxes
object>, tool: poly-
chemprint3.tools.toolSpec.toolSpec =
<polychemprint3.tools.nullTool.nullTool
object>, **kwargs)

Bases: polychemprint3.sequence.sequenceSpec.sequenceSpec

Implemented print sequence for gapLines.

genSequence()
Generates the list of python commands to execute for this sequence (shape).

Returns whether successfully reached the end or not

Return type bool

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.6.6 polychemprint3.sequence.line module

While dispensing, moves axes a set distance in X,Y,Z at set speed

9.6. polychemprint3.sequence 63

polychemprint3, Release 1.0

First created on 13/11/2019 14:41:31
Revised (dd/mm/yyyy): 17/12/2020 - BP
Author: Bijal Patel

class polychemprint3.sequence.line.line(axes: polychemprint3.axes.axes3DSpec.Axes3DSpec
= <polychemprint3.axes.nullAxes.nullAxes
object>, tool: poly-
chemprint3.tools.toolSpec.toolSpec = <poly-
chemprint3.tools.nullTool.nullTool object>,
**kwargs)

Bases: polychemprint3.sequence.sequenceSpec.sequenceSpec

Implemented print sequence for single lines.

genSequence()
Loads print sequence into a list into cmdList attribute.

Returns whether successfully reached the end or not

Return type bool

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.6.7 polychemprint3.sequence.circle module

9.6.8 polychemprint3.sequence.cuboid module

3D Cuboid with base along the XY axes

First created (dd/mm/yyyy): 05/06/2020
Revised (dd/mm/yyyy): 17/12/2020 - BP
Author: Yilong Chang

class polychemprint3.sequence.cuboid.cuboid(axes: poly-
chemprint3.axes.axes3DSpec.Axes3DSpec =
<polychemprint3.axes.nullAxes.nullAxes
object>, tool: poly-
chemprint3.tools.toolSpec.toolSpec =
<polychemprint3.tools.nullTool.nullTool
object>, **kwargs)

Bases: polychemprint3.sequence.sequenceSpec.sequenceSpec

3D Cuboid with base along the XY axes

64 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

genSequence()
Loads print sequence into a list into cmdList attribute.

Returns whether successfully reached the end or not

Return type bool

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.6.9 polychemprint3.sequence.pyramid module

3D Pyramid with base along XY axes.

First created (dd/mm/yyyy): 05/06/2020
Revised (dd/mm/yyyy): 17/12/2020 - BP
Author: Yilong Chang

class polychemprint3.sequence.pyramid.pyramid(axes: poly-
chemprint3.axes.axes3DSpec.Axes3DSpec
= <poly-
chemprint3.axes.nullAxes.nullAxes
object>, tool: poly-
chemprint3.tools.toolSpec.toolSpec =
<polychemprint3.tools.nullTool.nullTool
object>, **kwargs)

Bases: polychemprint3.sequence.sequenceSpec.sequenceSpec

Implemented print sequence for circle.

genSequence()
Loads print sequence into a list into cmdList attribute.

Returns whether successfully reached the end or not

Return type bool

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.6. polychemprint3.sequence 65

polychemprint3, Release 1.0

9.6.10 polychemprint3.sequence.rectangle module

2D Rectangle along the XY axes

First created (dd/mm/yyyy): 05/06/2020
Revised (dd/mm/yyyy): 17/12/2020 - BP
Author: Bijal Patel
Author: Yilong Chang

class polychemprint3.sequence.rectangle.rectangle(axes: poly-
chemprint3.axes.axes3DSpec.Axes3DSpec
= <poly-
chemprint3.axes.nullAxes.nullAxes
object>, tool: poly-
chemprint3.tools.toolSpec.toolSpec
= <poly-
chemprint3.tools.nullTool.nullTool
object>, **kwargs)

Bases: polychemprint3.sequence.sequenceSpec.sequenceSpec

Implemented print sequence for rectangle.

genSequence()
Loads print sequence into a list into cmdList attribute.

Returns whether successfully reached the end or not

Return type bool

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.6.11 polychemprint3.sequence.triangle module

9.6.12 polychemprint3.sequence.plate module

Predefined print sequence for plates.

First created on 13/11/2019 14:41:31
Revised:
Author: Bijal Patel

66 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

class polychemprint3.sequence.plate.plate(axes: polychemprint3.axes.axes3DSpec.Axes3DSpec
= <polychemprint3.axes.nullAxes.nullAxes
object>, tool: poly-
chemprint3.tools.toolSpec.toolSpec = <poly-
chemprint3.tools.nullTool.nullTool object>,
**kwargs)

Bases: polychemprint3.sequence.sequenceSpec.sequenceSpec

Implemented print sequence for plates.

genSequence()
Loads print sequence into a list into cmdList attribute.

Returns whether successfully reached the end or not

Return type bool

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.6.13 polychemprint3.sequence.GCodeFileInkscape module

Parameterized code for reading in a gcode file and reprocessing for PCP3

First created on 2020/05/14 18:16:00
Revised: 2020/12/17
Author: Bijal Patel

class polychemprint3.sequence.GCodeFileInkscape.GCodeFileInkscape(axes: poly-
chemprint3.axes.axes3DSpec.Axes3DSpec
= <poly-
chemprint3.axes.nullAxes.nullAxes
object>,
tool: poly-
chemprint3.tools.toolSpec.toolSpec
= <poly-
chemprint3.tools.nullTool.nullTool
object>,
**kwargs)

Bases: polychemprint3.sequence.sequenceSpec.sequenceSpec

Sequence template for importing GCODE motion commands and tool triggers into PCP Recipe framework

genSequence()
Loads print sequence into a list into cmdList attribute.

Returns Whether successfully reached the end or not.

Return type bool

9.6. polychemprint3.sequence 67

polychemprint3, Release 1.0

importFromGFile()
Attempts to read line by line from GcodeFile at GCodeFilePath and return the read lines as a list.

Returns

• bool – True if read from file without an error.

• list of str – A list containing each line read in as a separate str element.

insertToolCode(procGlines)
Augments procGlines with tool on/off/trv values based on the z-carriage height.

Returns fullLines – The combined list of Gcode and tool commands.

Return type list of str

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

processGCode(GLines)
Parses each line in Glines to remove unusable commands and reconstitutes motion, feed strings with the
rates the user provides in the CLI.

Returns procGlines – A list of GCode lines processed to remove garbage and include user-
specified feeds, z height.

Return type list of str

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.6.14 polychemprint3.sequence.GCodeFile3DSlicer module

Parameterized code for reading in a gcode file for 3D printing and reprocessing for PCP3

First created on 05/14/2020 18:16:00
Revised: 11/11/21
Author: Bijal Patel

class polychemprint3.sequence.GCodeFile3DSlicer.GCodeFile3DSlicer(axes: poly-
chemprint3.axes.axes3DSpec.Axes3DSpec
= <poly-
chemprint3.axes.nullAxes.nullAxes
object>,
tool: poly-
chemprint3.tools.toolSpec.toolSpec
= <poly-
chemprint3.tools.nullTool.nullTool
object>,
**kwargs)

Bases: polychemprint3.sequence.sequenceSpec.sequenceSpec

68 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

Sequence template for importing 3D GCODE motion commands and tool triggers into PCP Recipe framework

genSequence()
Loads print sequence into a list into cmdList attribute.

Returns whether successfully reached the end or not

Return type bool

importFromGFile()
Attempts to read line by line from GcodeFile at GCodeFilePath into memory

insertToolCode(procGlines)

loadLogSelf(logString)
loads log back into dict.

Parameters logString (String) – log string to be loaded back in

processGCode(GLines)
Attempts to filter line by line from GLines to remove garbage and substitute values

writeLogSelf()
Generates log string containing dict to be written to log file.

Returns log in string format

Return type String

9.7 polychemprint3.utility

9.7.1 polychemprint3.utility.fileHandler module

Specifies interface for classes that will handle rw ‘data’ files.

First created on Sun Oct 20 00:03:21 2019
Revised: 20/10/2019 00:34:27
Author: Bijal Patel

class polychemprint3.utility.fileHandler.fileHandler(fullFilePath=None, **kwargs)
Bases: object

Class for objects that can read/write to file

appendToFile(outString)
Appends to file with new content from outString.

Parameters outString (String) – the string to write to the file

Returns True/False if writing passes/fails + errors

Return type bool

overWriteToFile(outString)
Completely overwrites file with new content from outString.

Parameters outString (String) – the string to write to the file

Returns True/False if writing passes/fails + errors

9.7. polychemprint3.utility 69

polychemprint3, Release 1.0

Return type bool

peekFile(numLines)
Reads numLines from file and returns.

Parameters numLines (int) – number of lines to read in from file

Returns

• bool – True/ False if read successful

• [lines] – array of strings read in or [“Failed”]

readFullFile()
Reads the entire file into memory as a list of strings.

Returns

• bool – True/False if read passes/fails + errors

• [lines] – array of strings read in or [“Failed”]

testFileIO(modeString)
Tests if file can be opened and closed.

Parameters modeString (String) – mode with which to open file (“r,w,r+,a”)

Returns True/False if test passes/fails + errors

Return type bool

9.7.2 polychemprint3.utility.loggerSpec module

Specifies interface for all classes to read/write themselves to string.

First created on Sun Oct 20 00:03:21 2019
Revised: 20/10/2019 00:34:27
Author: Bijal Patel

class polychemprint3.utility.loggerSpec.loggerSpec(**kwargs)
Bases: abc.ABC

Abstract Base Class for objects that can generate log strings.

loadLogSelf(yamlString)
loads yaml log back into dict.

Parameters yamlString (String) – yaml string to be loaded back in

writeLogSelf()
Generates yaml string containing dict to be written to log file.

Returns log in yaml string format

Return type String

70 Chapter 9. Sphinx Autodocumentation

polychemprint3, Release 1.0

9.7.3 polychemprint3.utility.serialDeviceSpec module

Interface for all Serial Device objects (extruders/lasers/axes/etc).

First created on Sun Oct 20 00:03:21 2019
Revised: 20/10/2019 00:34:27
Author: Bijal Patel

class polychemprint3.utility.serialDeviceSpec.serialDeviceSpec(devAddress,
baudRate,
commsTimeOut,
**kwargs)

Bases: abc.ABC

Abstract Base Class for all objects using serial device.

checkIfSerialConnectParamsSet()
Goes through connection parameters and sees if all are set.

Returns True if all parameters are set, false if any unset

Return type bool

handShakeSerial()
Perform communications handshake with serial device.

Returns

• [1, “Handshake Successful”] – success occured

• [0, ‘Handshake Failed, Rcvd + message received’] – failure occured

• [-1, “Error (Handshake with Tool Failed + error text”]) – Error received

readTime()
Reads in from serial device until timeout.

Returns All text read in, empty string if nothing

Return type String

startSerial()
Creates pySerial device.

Returns

• [1, “Terminated successfully”] – started succesfully

• [-1, “Error (error text”]) – could not start

stopSerial()
Terminates communication.

Returns

• [1, “Terminated successfully”] – started succesfully

• [-1, “Error (Serial Device could not be stopped + error text”]) – could not start

9.7. polychemprint3.utility 71

polychemprint3, Release 1.0

72 Chapter 9. Sphinx Autodocumentation

Python Module Index

p
polychemprint3.axes.axes3DSpec, 49
polychemprint3.axes.lulzbotTaz6_BP, 50
polychemprint3.axes.nullAxes, 52
polychemprint3.commandLineInterface.ioElementSpec,

47
polychemprint3.commandLineInterface.ioMenuSpec,

47
polychemprint3.commandLineInterface.ioTextPanel,

48
polychemprint3.data, 49
polychemprint3.data.TextPanels, 49
polychemprint3.recipes.recipe, 58
polychemprint3.sequence.basicMove, 61
polychemprint3.sequence.cuboid, 64
polychemprint3.sequence.gapLine, 63
polychemprint3.sequence.GCodeFile3DSlicer,

68
polychemprint3.sequence.GCodeFileInkscape,

67
polychemprint3.sequence.line, 63
polychemprint3.sequence.pause, 61
polychemprint3.sequence.plate, 66
polychemprint3.sequence.pyramid, 65
polychemprint3.sequence.rectangle, 66
polychemprint3.sequence.sequenceSpec,

60
polychemprint3.sequence.setToolState,

62
polychemprint3.tools.laser6W, 53
polychemprint3.tools.nullTool, 55
polychemprint3.tools.toolSpec, 57
polychemprint3.utility.fileHandler, 69
polychemprint3.utility.loggerSpec, 70
polychemprint3.utility.serialDeviceSpec,

71

73

polychemprint3, Release 1.0

74 Python Module Index

Index

A
activate() (polychemprint3.axes.axes3DSpec.Axes3DSpec

method), 49
activate() (polychemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP

method), 50
activate() (polychemprint3.axes.nullAxes.nullAxes

method), 52
activate() (polychemprint3.tools.laser6W.laser6W

method), 53
activate() (polychemprint3.tools.nullTool.nullTool

method), 56
activate() (polychemprint3.tools.toolSpec.toolSpec

method), 57
addSeq() (polychemprint3.recipes.recipe.recipe

method), 59
appendToFile() (poly-

chemprint3.utility.fileHandler.fileHandler
method), 69

Axes3DSpec (class in poly-
chemprint3.axes.axes3DSpec), 49

B
basicMove (class in poly-

chemprint3.sequence.basicMove), 61

C
checkIfSerialConnectParamsSet() (poly-

chemprint3.tools.laser6W.laser6W method),
54

checkIfSerialConnectParamsSet() (poly-
chemprint3.utility.serialDeviceSpec.serialDeviceSpec
method), 71

cuboid (class in polychemprint3.sequence.cuboid), 64

D
deactivate() (poly-

chemprint3.axes.axes3DSpec.Axes3DSpec
method), 49

deactivate() (poly-
chemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP
method), 50

deactivate() (poly-
chemprint3.axes.nullAxes.nullAxes method),
52

deactivate() (poly-
chemprint3.tools.laser6W.laser6W method),
54

deactivate() (poly-
chemprint3.tools.nullTool.nullTool method),
56

deactivate() (poly-
chemprint3.tools.toolSpec.toolSpec method),
57

deleteSeq() (polychemprint3.recipes.recipe.recipe
method), 59

disengage() (polychemprint3.tools.laser6W.laser6W
method), 54

disengage() (polychemprint3.tools.nullTool.nullTool
method), 56

disengage() (polychemprint3.tools.toolSpec.toolSpec
method), 57

E
engage() (polychemprint3.tools.laser6W.laser6W

method), 54
engage() (polychemprint3.tools.nullTool.nullTool

method), 56
engage() (polychemprint3.tools.toolSpec.toolSpec

method), 57

F
fileHandler (class in poly-

chemprint3.utility.fileHandler), 69

G
gapLine (class in polychemprint3.sequence.gapLine),

63

75

polychemprint3, Release 1.0

GCodeFile3DSlicer (class in poly-
chemprint3.sequence.GCodeFile3DSlicer),
68

GCodeFileInkscape (class in poly-
chemprint3.sequence.GCodeFileInkscape),
67

genRecipe() (polychemprint3.recipes.recipe.recipe
method), 59

genSequence() (poly-
chemprint3.sequence.basicMove.basicMove
method), 61

genSequence() (poly-
chemprint3.sequence.cuboid.cuboid method),
64

genSequence() (poly-
chemprint3.sequence.gapLine.gapLine
method), 63

genSequence() (poly-
chemprint3.sequence.GCodeFile3DSlicer.GCodeFile3DSlicer
method), 69

genSequence() (poly-
chemprint3.sequence.GCodeFileInkscape.GCodeFileInkscape
method), 67

genSequence() (polychemprint3.sequence.line.line
method), 64

genSequence() (poly-
chemprint3.sequence.pause.pause method),
62

genSequence() (polychemprint3.sequence.plate.plate
method), 67

genSequence() (poly-
chemprint3.sequence.pyramid.pyramid
method), 65

genSequence() (poly-
chemprint3.sequence.rectangle.rectangle
method), 66

genSequence() (poly-
chemprint3.sequence.sequenceSpec.sequenceSpec
method), 60

genSequence() (poly-
chemprint3.sequence.setToolState.setToolState
method), 62

getAbsPosXY() (poly-
chemprint3.axes.axes3DSpec.Axes3DSpec
method), 49

getAbsPosXY() (poly-
chemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP
method), 50

getAbsPosXY() (poly-
chemprint3.axes.nullAxes.nullAxes method),
52

getState() (polychemprint3.tools.laser6W.laser6W
method), 54

getState() (polychemprint3.tools.nullTool.nullTool

method), 56
getState() (polychemprint3.tools.toolSpec.toolSpec

method), 58

H
handShakeSerial() (poly-

chemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP
method), 51

handShakeSerial() (poly-
chemprint3.tools.laser6W.laser6W method),
54

handShakeSerial() (poly-
chemprint3.utility.serialDeviceSpec.serialDeviceSpec
method), 71

I
importFromGFile() (poly-

chemprint3.sequence.GCodeFile3DSlicer.GCodeFile3DSlicer
method), 69

importFromGFile() (poly-
chemprint3.sequence.GCodeFileInkscape.GCodeFileInkscape
method), 68

insertToolCode() (poly-
chemprint3.sequence.GCodeFile3DSlicer.GCodeFile3DSlicer
method), 69

insertToolCode() (poly-
chemprint3.sequence.GCodeFileInkscape.GCodeFileInkscape
method), 68

io_Operate() (poly-
chemprint3.commandLineInterface.ioElementSpec.ioElementSpec
method), 47

io_Operate() (poly-
chemprint3.commandLineInterface.ioMenuSpec.ioMenuSpec
method), 48

io_Operate() (poly-
chemprint3.commandLineInterface.ioTextPanel.ioTextPanel
method), 48

ioElementSpec (class in poly-
chemprint3.commandLineInterface.ioElementSpec),
47

ioMenu_printMenu() (poly-
chemprint3.commandLineInterface.ioMenuSpec.ioMenuSpec
method), 48

ioMenu_updateStoredCmds() (poly-
chemprint3.commandLineInterface.ioMenuSpec.ioMenuSpec
method), 48

ioMenuSpec (class in poly-
chemprint3.commandLineInterface.ioMenuSpec),
48

ioTextPanel (class in poly-
chemprint3.commandLineInterface.ioTextPanel),
48

76 Index

polychemprint3, Release 1.0

L
laser6W (class in polychemprint3.tools.laser6W), 53
line (class in polychemprint3.sequence.line), 64
loadLogSelf() (poly-

chemprint3.recipes.recipe.recipe method),
59

loadLogSelf() (poly-
chemprint3.sequence.basicMove.basicMove
method), 61

loadLogSelf() (poly-
chemprint3.sequence.cuboid.cuboid method),
65

loadLogSelf() (poly-
chemprint3.sequence.gapLine.gapLine
method), 63

loadLogSelf() (poly-
chemprint3.sequence.GCodeFile3DSlicer.GCodeFile3DSlicer
method), 69

loadLogSelf() (poly-
chemprint3.sequence.GCodeFileInkscape.GCodeFileInkscape
method), 68

loadLogSelf() (polychemprint3.sequence.line.line
method), 64

loadLogSelf() (poly-
chemprint3.sequence.pause.pause method),
62

loadLogSelf() (polychemprint3.sequence.plate.plate
method), 67

loadLogSelf() (poly-
chemprint3.sequence.pyramid.pyramid
method), 65

loadLogSelf() (poly-
chemprint3.sequence.rectangle.rectangle
method), 66

loadLogSelf() (poly-
chemprint3.sequence.sequenceSpec.sequenceSpec
method), 60

loadLogSelf() (poly-
chemprint3.sequence.setToolState.setToolState
method), 63

loadLogSelf() (poly-
chemprint3.tools.laser6W.laser6W method),
55

loadLogSelf() (poly-
chemprint3.tools.nullTool.nullTool method),
56

loadLogSelf() (poly-
chemprint3.tools.toolSpec.toolSpec method),
58

loadLogSelf() (poly-
chemprint3.utility.loggerSpec.loggerSpec
method), 70

loggerSpec (class in poly-
chemprint3.utility.loggerSpec), 70

lulzbotTaz6_BP (class in poly-
chemprint3.axes.lulzbotTaz6_BP), 50

M
move() (polychemprint3.axes.axes3DSpec.Axes3DSpec

method), 49
move() (polychemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP

method), 51
move() (polychemprint3.axes.nullAxes.nullAxes

method), 53

N
nullAxes (class in polychemprint3.axes.nullAxes), 52
nullTool (class in polychemprint3.tools.nullTool), 56

O
operateRecipe() (poly-

chemprint3.recipes.recipe.recipe method),
59

operateSeq() (poly-
chemprint3.sequence.sequenceSpec.sequenceSpec
method), 60

overWriteToFile() (poly-
chemprint3.utility.fileHandler.fileHandler
method), 69

P
pause (class in polychemprint3.sequence.pause), 62
peekFile() (polychemprint3.utility.fileHandler.fileHandler

method), 70
plate (class in polychemprint3.sequence.plate), 66
poll() (polychemprint3.axes.axes3DSpec.Axes3DSpec

method), 49
poll() (polychemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP

method), 51
poll() (polychemprint3.axes.nullAxes.nullAxes

method), 53
polychemprint3.axes.axes3DSpec (module),

49
polychemprint3.axes.lulzbotTaz6_BP (mod-

ule), 50
polychemprint3.axes.nullAxes (module), 52
polychemprint3.commandLineInterface.ioElementSpec

(module), 47
polychemprint3.commandLineInterface.ioMenuSpec

(module), 47
polychemprint3.commandLineInterface.ioTextPanel

(module), 48
polychemprint3.data (module), 49
polychemprint3.data.TextPanels (module),

49
polychemprint3.recipes.recipe (module), 58
polychemprint3.sequence.basicMove (mod-

ule), 61

Index 77

polychemprint3, Release 1.0

polychemprint3.sequence.cuboid (module),
64

polychemprint3.sequence.gapLine (module),
63

polychemprint3.sequence.GCodeFile3DSlicer
(module), 68

polychemprint3.sequence.GCodeFileInkscape
(module), 67

polychemprint3.sequence.line (module), 63
polychemprint3.sequence.pause (module), 61
polychemprint3.sequence.plate (module), 66
polychemprint3.sequence.pyramid (module),

65
polychemprint3.sequence.rectangle (mod-

ule), 66
polychemprint3.sequence.sequenceSpec

(module), 60
polychemprint3.sequence.setToolState

(module), 62
polychemprint3.tools.laser6W (module), 53
polychemprint3.tools.nullTool (module), 55
polychemprint3.tools.toolSpec (module), 57
polychemprint3.utility.fileHandler (mod-

ule), 69
polychemprint3.utility.loggerSpec (mod-

ule), 70
polychemprint3.utility.serialDeviceSpec

(module), 71
processGCode() (poly-

chemprint3.sequence.GCodeFile3DSlicer.GCodeFile3DSlicer
method), 69

processGCode() (poly-
chemprint3.sequence.GCodeFileInkscape.GCodeFileInkscape
method), 68

pyramid (class in polychemprint3.sequence.pyramid),
65

R
readFullFile() (poly-

chemprint3.utility.fileHandler.fileHandler
method), 70

readTime() (polychemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP
method), 51

readTime() (polychemprint3.tools.laser6W.laser6W
method), 55

readTime() (polychemprint3.utility.serialDeviceSpec.serialDeviceSpec
method), 71

recipe (class in polychemprint3.recipes.recipe), 58
recipeStub (class in polychemprint3.recipes.recipe),

59
rectangle (class in poly-

chemprint3.sequence.rectangle), 66
reorderSeq() (polychemprint3.recipes.recipe.recipe

method), 59

S
sendCmd() (polychemprint3.axes.axes3DSpec.Axes3DSpec

method), 50
sendCmd() (polychemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP

method), 51
sendCmd() (polychemprint3.axes.nullAxes.nullAxes

method), 53
seqParam (class in poly-

chemprint3.sequence.sequenceSpec), 60
sequenceSpec (class in poly-

chemprint3.sequence.sequenceSpec), 60
serialDeviceSpec (class in poly-

chemprint3.utility.serialDeviceSpec), 71
setPosMode() (poly-

chemprint3.axes.axes3DSpec.Axes3DSpec
method), 50

setPosMode() (poly-
chemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP
method), 51

setPosMode() (poly-
chemprint3.axes.nullAxes.nullAxes method),
53

setPosZero() (poly-
chemprint3.axes.axes3DSpec.Axes3DSpec
method), 50

setPosZero() (poly-
chemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP
method), 51

setPosZero() (poly-
chemprint3.axes.nullAxes.nullAxes method),
53

setToolState (class in poly-
chemprint3.sequence.setToolState), 62

setValue() (polychemprint3.tools.laser6W.laser6W
method), 55

setValue() (polychemprint3.tools.nullTool.nullTool
method), 56

setValue() (polychemprint3.tools.toolSpec.toolSpec
method), 58

startSerial() (poly-
chemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP
method), 51

startSerial() (poly-
chemprint3.tools.laser6W.laser6W method),
55

startSerial() (poly-
chemprint3.utility.serialDeviceSpec.serialDeviceSpec
method), 71

stopSerial() (poly-
chemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP
method), 51

stopSerial() (poly-
chemprint3.tools.laser6W.laser6W method),
55

78 Index

polychemprint3, Release 1.0

stopSerial() (poly-
chemprint3.utility.serialDeviceSpec.serialDeviceSpec
method), 71

T
testFileIO() (poly-

chemprint3.utility.fileHandler.fileHandler
method), 70

toolSpec (class in polychemprint3.tools.toolSpec), 57

U
updateParams() (poly-

chemprint3.sequence.sequenceSpec.sequenceSpec
method), 60

W
waitReady() (polychemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP

method), 52
writeLogSelf() (poly-

chemprint3.recipes.recipe.recipe method),
59

writeLogSelf() (poly-
chemprint3.sequence.basicMove.basicMove
method), 61

writeLogSelf() (poly-
chemprint3.sequence.cuboid.cuboid method),
65

writeLogSelf() (poly-
chemprint3.sequence.gapLine.gapLine
method), 63

writeLogSelf() (poly-
chemprint3.sequence.GCodeFile3DSlicer.GCodeFile3DSlicer
method), 69

writeLogSelf() (poly-
chemprint3.sequence.GCodeFileInkscape.GCodeFileInkscape
method), 68

writeLogSelf() (polychemprint3.sequence.line.line
method), 64

writeLogSelf() (poly-
chemprint3.sequence.pause.pause method),
62

writeLogSelf() (poly-
chemprint3.sequence.plate.plate method),
67

writeLogSelf() (poly-
chemprint3.sequence.pyramid.pyramid
method), 65

writeLogSelf() (poly-
chemprint3.sequence.rectangle.rectangle
method), 66

writeLogSelf() (poly-
chemprint3.sequence.sequenceSpec.sequenceSpec
method), 60

writeLogSelf() (poly-
chemprint3.sequence.setToolState.setToolState
method), 63

writeLogSelf() (poly-
chemprint3.tools.laser6W.laser6W method),
55

writeLogSelf() (poly-
chemprint3.tools.nullTool.nullTool method),
57

writeLogSelf() (poly-
chemprint3.tools.toolSpec.toolSpec method),
58

writeLogSelf() (poly-
chemprint3.utility.loggerSpec.loggerSpec
method), 70

writeReady() (poly-
chemprint3.axes.lulzbotTaz6_BP.lulzbotTaz6_BP
method), 52

Index 79

	Program Overview
	Installation and Setup
	Requirements/Supported OS
	Installing Anaconda (optional)
	Installing PCP3 from PyPi via pip
	Run from Source (from Github)
	Setting up new Hardware
	Modifying Marlin Firmware

	Main Menu and Navigation
	Reading Menus
	Navigating Menus
	Special Commands
	Quit the Program
	Ctrl + C, or Break

	Configuration/About Menu
	View Program Details and License Text
	Change Level of Output Detail
	Change Axes and Tool

	Hardware Menu
	GCODE Entry
	Controlling Tools
	Hotkeys for Jogging Axes
	Clean and Raise Routines
	T ? , / . Commands
	Quit Hardware Menu

	Sequence Menu
	The Sequence Library
	Importing GCode Sequences

	Recipe Menu
	Creating a new Recipe
	Modifying/Saving Active Recipe
	Browse/Load Stored Recipes
	View Recipe Details
	Execute Recipe Menu

	PCP3 Package Overview
	Sphinx Autodocumentation
	polychemprint3.commandLineInterface
	polychemprint3.data
	polychemprint3.axes
	polychemprint3.tools
	polychemprint3.recipes
	polychemprint3.sequence
	polychemprint3.utility

	Python Module Index
	Index

